2022-02-25

European Radiology:加入了这一放射组学信息,乳腺良恶性病变的鉴别也许不再困难!

核心提示:对比增强乳腺钼靶(CEM)是一种新兴的乳腺成像技术。它以双能量乳腺造影技术为基础,利用静脉注射碘化造影剂来描绘乳腺病变的增强情况。

对比增强乳腺钼靶(CEM)是一种新兴的乳腺成像技术。它以双能量乳腺造影技术为基础,利用静脉注射碘化造影剂来描绘乳腺病变的增强情况。乳腺癌(BCs)在CEM上检测的敏感性极高,甚至在乳腺致密的女性中也是如此。

随着计算机技术的进步,放射组学得到了快速发展。放射线组学利用高通量计算提取大量的图像特征,并将标准的医疗图像转换为可量化的数据,随后可利用传统的生物统计学和人工智能,包括机器学习方法进行分析。据我们所知,现阶段对肿瘤周围环境或肿瘤周围实质的相关研究十分有限。

近几十年来,随着人们对肿瘤微环境的关注度越来越高,越来越多的研究将研究重点集中在肿瘤周边区域的定量表征上。考虑到瘤周区域的独特生物学意义,最近的一些研究试图探索BC瘤周放射组学特征的作用,并显示这些特征在预测诊断或预后。然而,这些研究大多采用的是乳腺磁共振成像(MRI)或超声图像,到目前为止,还没有研究使用CEM图像中的乳腺周围放射组学特征进行BC的诊断。

近日,发表在European Radiology杂志的一项研究评估了CEM图像中的病变周围区域的放射组学分析在乳腺良性和恶性病变鉴别方面的价值,为乳腺癌的早期诊断及治疗提供了技术支持。

本项回顾性研究包括2017年11月至2020年2月期间接受CEM检查的患者。病变轮廓由人工划定。自动获得病灶周围区域。每个病变有七个感兴趣的区域(ROI),包括病变ROI、环形周围ROI(1毫米、3毫米、5毫米)和病变+周围ROI(1毫米、3毫米、5毫米)。总体而言,从每个ROI中提取了4098个放射组学特征。数据集被分为训练和测试集(1:1)。使用LA.............

原文转载:http://health.30bags.com/a/623663.html


c2m:https://www.ikjzd.com/w/1245
宰牲节:https://m.ikjzd.com/articles/101007
sscc:https://www.ikjzd.com/w/120
史泰博官网:https://m.ikjzd.com/w/2112
注册一家美国公司的要求和费用:https://m.ikjzd.com/hegui/article/155068
美国注册公司多少费用:https://m.ikjzd.com/hegui/article/155066
国内注册美国公司费用:https://m.ikjzd.com/hegui/article/155064

No comments:

Post a Comment