基本使用
ThreadLocal 的作用是:提供线程内的局部变量,不同的线程之间不会相互干扰,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或组件之间一些公共变量传递的复杂度,降低耦合性。
方法声明 | 描述 |
---|---|
ThreadLocal() | 创建ThreadLocal对象 |
public void set( T value) | 设置当前线程绑定的局部变量 |
public T get() | 获取当前线程绑定的局部变量 |
public void remove() | 移除当前线程绑定的局部变量 |
简单使用:
public class MyDemo { private String content; private String getContent() { return content; } private void setContent(String content) { this.content = content; } public static void main(String[] args) { MyDemo demo = new MyDemo(); for (int i = 0; i < 5; i++) { Thread thread = new Thread(new Runnable() { @Override public void run() { demo.setContent(Thread.currentThread().getName() + "的数据"); System.out.println("-----------------------"); System.out.println(Thread.currentThread().getName() + "--->" + demo.getContent()); } }); thread.setName("线程" + i); thread.start(); } }}
public class MyDemo { private static ThreadLocal<String> tl = new ThreadLocal<>(); private String content; private String getContent() { return tl.get(); } private void setContent(String content) { tl.set(content); } public static void main(String[] args) { MyDemo demo = new MyDemo(); for (int i = 0; i < 5; i++) { Thread thread = new Thread(new Runnable() { @Override public void run() { demo.setContent(Thread.currentThread().getName() + "的数据"); System.out.println("-----------------------"); System.out.println(Thread.currentThread().getName() + "--->" + demo.getContent()); } }); thread.setName("线程" + i); thread.start(); } }}
这样可以很好的解决多线程之间数据隔离的问题,用synchronized加锁也可以实现,但synchronized侧重的是多个线程之间访问资源的同步性,而ThreadLocal侧重的是每个线程之间的数据隔离。
synchronized | ThreadLocal | |
---|---|---|
原理 | 同步机制采用'以时间换空间'的方式, 只提供了一份变量,让不同的线程排队访问 | ThreadLocal采用'以空间换时间'的方式, 为每一个线程都提供了一份变量的副本,从而实现同时访问而相不干扰 |
侧重点 | 多个线程之间访问资源的同步性 | 多线程中让每个线程之间的数据相互隔离 |
应用场景
涉及到数据传递和线程隔离的场景,可以考虑用ThreadLocal来解决:转账案例,涉及两个DML操作: 一个转出,一个转入。这些操作是需要具备原子性的。所以这里就需要操作事务,来保证转出和转入操作具备原子性。开启事务的注意两点:
- 为了保证所有的操作在一个事务中, 使用的连接必须是同一个: service层开启事务的connection需要跟dao层访问数据库的connection保持一致。
- 线程并发情况下, 每个线程只能操作各自的 connection。
用ThreadLocal的解决方案:在获取Connection连接的JdbcUtils工具类加入ThreadLocal,代码如下:
public class JdbcUtils { //ThreadLocal对象 : 将connection绑定在当前线程中 private static final ThreadLocal<Connection> tl = new ThreadLocal(); // c3p0 数据库连接池对象属性 private static final ComboPooledDataSource ds = new ComboPooledDataSource(); // 获取连接 public static Connection getConnection() throws SQLException { //取出当前线程绑定的connection对象 Connection conn = tl.get(); if (conn == null) { //如果没有,则从连接池中取出 conn = ds.getConnection(); //再将connection对象绑定到当前线程中 tl.set(conn); } return conn; } //释放资源 public static void release(AutoCloseable... ios) { for (AutoCloseable io : ios) { if (io != null) { try { io.close(); } catch (Exception e) { e.printStackTrace(); } } } } public static void commitAndClose() { try { Connection conn = getConnection(); //提交事务 conn.commit(); //解除绑定 tl.remove(); //释放连接 conn.close(); } catch (SQLException e) { e.printStackTrace(); } } public static void rollbackAndClose() { try { Connection conn = getConnection(); //回滚事务 conn.rollback(); //解除绑定 tl.remove(); //释放连接 conn.close(); } catch (SQLException e) { e.printStackTrace(); } }}
可以看出使用ThreadLocal的好处:
- 传递数据 : 保存每个线程绑定的数据,在需要的地方可以直接获取, 避免参数直接传递带来的代码耦合问题
- 线程隔离 : 各线程之间的数据相互隔离却又具备并发性,避免同步方式带来的性能损失
ThreadLocal的内部结构
jdk8以前:
jdk8之前使用ThreadLocal来维护一个ThreadLocalMap,以线程作为key
jdk8以后:
jdk8之后使用Thread来维护一个ThreadLocalMap,以ThreadLocal作为key
这样涉及的好处:
(1) 每个Map
存储的Entry
数量就会变少,因为jdk8之前的存储数量由Thread
的数量决定,现在是由ThreadLocal
的数量决定。
(2) 当Thread
销毁之后,对应的ThreadLocalMap
也会随之销毁,能减少内存的使用。
ThreadLocal核心方法的源码
方法声明 | 描述 |
---|---|
protected T initialValue() | 返回当前线程局部变量的初始值 |
public void set( T value) | 设置当前线程绑定的局部变量 |
public T get() | 获取当前线程绑定的局部变量 |
public void remove() | 移除当前线程绑定的局部变量 |
get()
/** * 返回当前线程中保存ThreadLocal的值 * 如果当前线程没有此ThreadLocal变量, * 则它会通过调用{@link #initialValue} 方法进行初始化值 * * @return 返回当前线程对应此ThreadLocal的值 */public T get() { // 获取当前线程对象 Thread t = Thread.currentThread(); // 获取此线程对象中维护的ThreadLocalMap对象 ThreadLocalMap map = getMap(t); // 如果此map存在 if (map != null) { // 以当前的ThreadLocal 为 key,调用getEntry获取对应的存储实体e ThreadLocalMap.Entry e = map.getEntry(this); // 找到对应的存储实体 e if (e != null) { @SuppressWarnings("unchecked") // 获取存储实体 e 对应的 value值 // 即为我们想要的当前线程对应此ThreadLocal的值 T result = (T)e.value; return result; } } // 如果map不存在,则证明此线程没有维护的ThreadLocalMap对象 // 调用setInitialValue进行初始化 return setInitialValue();}/** * set的变样实现,用于初始化值initialValue, * 用于代替防止用户重写set()方法 * * @return the initial value 初始化后的值 */private T setInitialValue() { // 调用initialValue获取初始化的值 T value = initialValue(); // 获取当前线程对象 Thread t = Thread.currentThread(); // 获取此线程对象中维护的ThreadLocalMap对象 ThreadLocalMap map = getMap(t); // 如果此map存在 if (map != null) // 存在则调用map.set设置此实体entry map.set(this, value); else // 1)当前线程Thread 不存在ThreadLocalMap对象 // 2)则调用createMap进行ThreadLocalMap对象的初始化 // 3)并将此实体entry作为第一个值存放至ThreadLocalMap中 createMap(t, value); // 返回设置的值value return value;}/** * 获取当前线程Thread对应维护的ThreadLocalMap * * @param t the current thread 当前线程 * @return the map 对应维护的ThreadLocalMap */ThreadLocalMap getMap(Thread t) { return t.threadLocals;}/** *创建当前线程Thread对应维护的ThreadLocalMap * * @param t 当前线程 * @param firstValue 存放到map中第一个entry的值 */void createMap(Thread t, T firstValue) { //这里的this是调用此方法的threadLocal t.threadLocals = new ThreadLocalMap(this, firstValue);}
首先调用Thread.currentThread()
方法获取当前线程对象,然后根据当前线程获取维护的ThreadLocalMap
对象;如果获取的Map
不为空,则在Map中以ThreadLocal
的引用作为key,调用getEntry
获取对应的存储实体,如果Entry不为空,获取对应的 value值。如果Map为空或者Entry为空,则调用setInitialValue()
方法。setInitialValue()方法里,调用initialValue()
方法获取初始化值value,然后判断当前线程是否有ThreadLocalMap
,map存在,调用set
设置Entry;map不存在则调用createMap()
进行ThreadLocalMap对象的初始化,并将此entry
作为第一个值存放至ThreadLocalMap中。
set()
/** * 设置当前线程对应的ThreadLocal的值 * * @param value 将要保存在当前线程对应的ThreadLocal的值 */public void set(T value) { // 获取当前线程对象 Thread t = Thread.currentThread(); // 获取此线程对象中维护的ThreadLocalMap对象 ThreadLocalMap map = getMap(t); // 如果此map存在 if (map != null) // 存在则调用map.set设置此实体entry map.set(this, value); else // 1)当前线程Thread 不存在ThreadLocalMap对象 // 2)则调用createMap进行ThreadLocalMap对象的初始化 // 3)并将此实体entry作为第一个值存放至ThreadLocalMap中 createMap(t, value);}
A. 首先获取当前线程,并根据当前线程获取一个ThreadLocalMap
B. 如果获取的Map不为空,则将参数设置到Map中(当前ThreadLocal的引用作为key)
C. 如果Map为空,则调用createMap给该线程创建 Map,并设置初始值
remove()
/** * 删除当前线程中保存的ThreadLocal对应的实体entry */public void remove() { // 获取当前线程对象中维护的ThreadLocalMap对象 ThreadLocalMap m = getMap(Thread.currentThread()); // 如果此map存在 if (m != null) // 存在则调用map.remove // 以当前ThreadLocal为key删除对应的实体entry m.remove(this);}
A. 首先获取当前线程,并根据当前线程获取一个ThreadLocalMap
B. 如果获取的Map不为空,则移除当前ThreadLocal对象对应的entry
initialValue()
protected T initialValue() { return null;}
(1) 这个方法是一个延迟调用方法,在set方法还未调用而先调用了get方法时才执行,并且仅执行1次。
(2)这个方法直接返回一个null
。
(3)如果想要一个除null之外的初始值,可以重写此方法。(备注: 该方法是一个protected
的方法,显然是为了让子类覆盖而设计的)
ThreadLocalMap
ThreadLocalMap是ThreadLocal的内部类,没有实现Map接口,用独立的方式实现了Map的功能,其内部的Entry也是独立实现。
成员变量
/** * 初始容量 —— 必须是2的整次幂 */ private static final int INITIAL_CAPACITY = 16; /** * 存放数据的table * 同样,数组长度必须是2的幂。 */ private Entry[] table; /** * 数组里面entrys的个数,可以用于判断table当前使用量是否超过负载因子。 */ private int size = 0; /** * 进行扩容的阈值,表使用量大于它的时候进行扩容。 */ private int threshold; // Default to 0 /** * 阈值设置为长度的2/3 */ private void setThreshold(int len) { threshold = len * 2 / 3; }
Entry
static class Entry extends WeakReference<ThreadLocal> { /** The value associated with this ThreadLocal. */ Object value; Entry(ThreadLocal k, Object v) { super(k); value = v; }}
在ThreadLocalMap中,也是用Entry来保存K-V结构数据的。但是Entry中key只能是ThreadLocal对象,这点被Entry的构造方法已经限定死了;
另外,Entry继承WeakReference,使用弱引用,可以将ThreadLocal对象的生命周期和线程生命周期解绑,持有对ThreadLocal的弱引用,可以使得ThreadLocal在没有其他强引用的时候被回收掉,这样可以避免因为线程得不到销毁导致ThreadLocal对象无法被回收hash冲突的解决
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) { //初始化table table = new ThreadLocal.ThreadLocalMap.Entry[INITIAL_CAPACITY]; //16 //计算索引 int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); //设置值 table[i] = new ThreadLocal.ThreadLocalMap.Entry(firstKey, firstValue); size = 1; //设置阈值 setThreshold(INITIAL_CAPACITY);}
& (INITIAL_CAPACITY - 1)
,这是取模的一种方式,对于2的幂取模,用此代替%(2^n)
,这也就是为啥容量必须为2的幂firstKey.threadLocalHashCode
:private final int threadLocalHashCode = nextHashCode(); private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT);}private static AtomicInteger nextHashCode = new AtomicInteger();private static final int HASH_INCREMENT = 0x61c88647;
这里定义了一个AtomicInteger类型,每次获取当前值并加上HASH_INCREMENT,
HASH_INCREMENT = 0x61c88647
,这个值是32位整型上限2^32-1乘以黄金分割比例0.618....的值2654435769,用有符号整型表示就是-1640531527,去掉符号后16进制表示为0x61c88647,目的就是为了让哈希码能均匀的分布在2的n次方的数组Entry[] table
中。线性探测法:
该方法一次探测下一个地址,直到有空的地址后插入,若整个空间都找不到空余的地址,则产生溢出。假设当前table长度为16,也就是说如果计算出来key的hash值为14,如果table[14]上已经有值,并且其key与当前key不一致,那么就发生了hash冲突,这个时候将14加1得到15,取table[15]进行判断,这个时候如果还是冲突会回到0,取table[0],以此类推,直到可以插入。
可以把table看成一个环形数组
/** * 获取环形数组的下一个索引 */ private static int nextIndex(int i, int len) { return ((i + 1 < len) ? i + 1 : 0); } /** * 获取环形数组的上一个索引 */ private static int prevIndex(int i, int len) { return ((i - 1 >= 0) ? i - 1 : len - 1); }
ThreadLocalMap的set():
private void set(ThreadLocal<?> key, Object value) { ThreadLocal.ThreadLocalMap.Entry[] tab = table; int len = tab.length; //计算索引 int i = key.threadLocalHashCode & (len-1); /** * 根据获取到的索引进行循环,如果当前索引上的table[i]不为空,在没有return的情况下, * 就使用nextIndex()获取下一个(线性探测法)。 */ for (ThreadLocal.ThreadLocalMap.Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { ThreadLocal<?> k = e.get(); //table[i]上key不为空,并且和当前key相同,更新value if (k == key) { e.value = value; return; } /** * table[i]上的key为空,说明被回收了 * 这个时候table[i]可以重新使用,用新的key-value将其替换,并删除其他无效的entry */ if (k == null) { replaceStaleEntry(key, value, i); return; } }
原文转载:http://www.shaoqun.com/a/490615.html
stylenanda官网:https://www.ikjzd.com/w/1675.html
zappos:https://www.ikjzd.com/w/330
首信易:https://www.ikjzd.com/w/1841
ThreadLocal基本使用ThreadLocal的作用是:提供线程内的局部变量,不同的线程之间不会相互干扰,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或组件之间一些公共变量传递的复杂度,降低耦合性。方法声明描述ThreadLocal()创建ThreadLocal对象publicvoidset(Tvalue)设置当前线程绑定的局部变量publicTget()获取当前线程绑定的局部
汇通天下物流:汇通天下物流
csa:csa
福建九鲤溪有什么好玩的项目啊?:福建九鲤溪有什么好玩的项目啊?
想做好Wish平台,先得弄懂它的推送机制!:想做好Wish平台,先得弄懂它的推送机制!
【买家亲述】在VIPON上面,我是这样找到想买的产品的!:【买家亲述】在VIPON上面,我是这样找到想买的产品的!
No comments:
Post a Comment