Cellulose nanocrystals possible 'green' wonder material
The nanocrystals might be used to create a new class of biomaterials with wide-ranging applications, such as strengthening construction materials and automotive components.
Calculations using precise models based on the atomic structure of cellulose show the crystals have a stiffness of 206 gigapascals, which is comparable to steel, said Pablo D. Zavattieri, a Purdue University assistant professor of civil engineering.
"This is a material that is showing really amazing properties," he said. "It is abundant, renewable and produced as waste in the paper industry."
Findings are detailed in a research paper featured on the cover of the December issue of the journal Cellulose.
"It is very difficult to measure the properties of these crystals experimentally because they are really tiny," Zavattieri said. "For the first time, we predicted their properties using quantum mechanics."
The nanocrystals are about 3 nanometers wide by 500 nanometers long -- or about 1/1,000th the width of a grain of sand -- making them too small to study with light microscopes and difficult to measure with laboratory instruments.
The paper was authored by Purdue doctoral student Fernando L. Dri; Louis G. Hector Jr., a researcher from the Chemical Sciences and Materials Systems Laboratory at General Motors Research and Development Center; Robert J. Moon, a researcher from the U.S. Forest Service's Forest Products Laboratory; and Zavattieri.
The findings represent a milestone in understanding the fundamental mechanical behavior of the cellulose nanocrystals.
"It is also the first step towards a multiscale modeling approach to understand and predict the behavior of individual crystals, the interaction between them, and their interaction with other materials," Zavattieri said. "This is important for the design of novel cellulose-based materials as other research groups are considering them for a huge variety of applications, ranging from electronics and medical devices to structural components for the automotive, civil and aerospace industries."
The cellulose nanocrystals represent a potential green alternative to carbon nanotubes for reinforcing materials such as polymers and concrete. Applications for biomaterials made from the cellulose nanocrystals might include biodegradable plastic bags, textiles and wound dressings; flexible batteries made from electrically conductive paper; new drug-delivery technologies; transparent flexible displays for electronic devices; special filters for water purification; new types of sensors; and computer memory.
Cellulose could come from a variety of biological sources including trees, plants, algae, ocean-dwelling organisms called tunicates, and bacteria that create a protective web of cellulose.
"With this in mind, cellulose nanomaterials are inherently renewable, sustainable, biodegradable and carbon-neutral like the sources from which they were extracted," Moon said. "They have the potential to be processed at industrial-scale quantities and at low cost compared to other materials."
Biomaterials manufacturing could be a natural extension of the paper and biofuels industries, using technology that is already well-established for cellulose-based materials.
"Some of the byproducts of the paper industry now go to making biofuels, so we could just add another process to use the leftover cellulose to make a composite material," Moon said. "The cellulose crystals are more difficult to break down into sugars to make liquid fuel. So let's make a product out of it, building on the existing infrastructure of the pulp and paper industry."
Their surface can be chemically modified to achieve different surface properties.
"For example, you might want to modify the surface so that it binds strongly with a reinforcing polymer to make a new type of tough composite material, or you might want to change the chemical characteristics so that it behaves differently with its environment," Moon said.
Zavattieri plans to extend his research to study the properties of alpha-chitin, a material from the shells of organisms including lobsters, crabs, mollusks and insects. Alpha-chitin appears to have similar mechanical properties as cellulose.
"This material is also abundant, renewable and waste of the food industry," he said.
The research was funded by the Forest Products Laboratory through the U.S. Department of Agriculture, the Purdue Research Foundation and the National Science Foundation.
Welcome to SUV System Ltd!
SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.
We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.
SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com
Electronic Components distributor:http://www.suvsystem.com
Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html
IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html
LED Distributor:http://www.suvsystem.com/l/LED-1.html
Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html
Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html
Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html
Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html
SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc
we are focus on the following fields,and hope we can help you.
Civil IC VISHAY IC Texas Instruments(TI) IC Electronic News PANASONIC Resistors NEC Transistors INTERSIL IC About US LINEAR IC Capacitor Military IC Resistor Arrays LITTELFUSE Diodes ON Diodes YAGEO Resistors IC(Integrated Circuits) NXP Diodes Chip Inductors AD IC Renesas parts IC MURATA IC BB IC Discrete Semiconductor Transistors chip Filter saws DIODES Transistors MOTOROLA IC Connectors Multi-units Transistors Switching Diodes Kingbrigt LED NXP Transistors Cypress IC TDK IC High Precision Resistors IDT IC Fleld Effect Transistors Bipolar Transistors Zener Diodes TOSHIBA Diodes AVX Resistors
http://www.suvsystem.com/a/8233.aspx
No comments:
Post a Comment